
Rue de Stassart, 36 • B-1050 Bruxelles
Tel : +32 2 550 08 11 • Fax : +32 2 550 08 19

EUROPEAN COMMITTEE FOR STANDARDIZATION
C OM ITÉ EUR OP ÉEN DE NOR M ALIS AT ION
EUROPÄISCHES KOMITEE FÜR NORMUNG

WORKSHOP CWA 14050-22

AGREEMENT November 2000

ICS 35.200; 35.240.40

Extensions for Financial Services (XFS) interface specification -
Release 3.0 - Part 22: Text Terminal Unit Device Class Interface -

Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

© 2000 CEN All rights of exploitation in any form and by any means reserved world-wide for
CEN National Members

Ref. No CWA 14050-22:2000 E

This CEN Workshop Agreement can in no way be held as being an official standard
as developed by CEN National Members.

Page 2
CWA 14050-22:2000

Table of Contents

Foreword 3

1. General 5

2. New Chapters... 5

2.1 References 5

2.2 XFS form/media definition files in multi-vendor environments.. 5

3. New Info Commands.. 5

3.1 WFS_INF_TTU_KEY_DETAIL 5

4. Changes to existing Info Commands 7

4.1 WFS_INF_TTU_STATUS ... 7

4.2 WFS_INF_TTU_CAPABILITIES.. 9

4.3 WFS_INF_TTU_QUERY_FORM.. 10

4.4 WFS_INF_TTU_QUERY_FIELD .. 11

5. New Execute Commands... 12

5.1 WFS_CMD_TTU_RESET ... 12

6. Changes to existing Execute Commands... ... 13

6.1 WFS_CMD_TTU_CLEARSCREEN.. 13

6.2 WFS_CMD_TTU_WRITE_FORM (former WFS_CMD_TTU_DISPLAY_FORM) 13

6.3 WFS_CMD_TTU_READ_FORM .. 14

6.4 WFS_CMD_TTU_WRITE ... 15

6.5 WFS_CMD_TTU_READ... 16

7. New Events 19

7.1 WFS_EXEE_TTU_FIELDERROR .. 19

7.2 WFS_EXEE_TTU_FIELDWARNING.. 20

7.3 WFS_EXEE_TTU_KEY .. 20

8. Changes to existing Events... 21

9. Changes to Form and Field Definitions 21

9.1 Definition Syntax 21

9.2 Field Definition 22

10. Changes to C - Header file.. 23

Page 3
CWA 14050-22:2000

Foreword

This CWA is revision 3.0 of the XFS interface specification.

The move from an XFS 2.0 specification (CWA 13449) to a 3.0 specification has been prompted by a series of factors.

Initially, there has been a technical imperative to extend the scope of the existing specification of the XFS Manager to
include new devices, such as the Card Embossing Unit.

Similarly, there has also been pressure, through implementation experience and the advance of the Microsoft
technology, to extend the functionality and capabilities of the existing devices covered by the specification.

Finally, it is also clear that our customers and the market are asking for an update to a specification, which is now over 2
years old. Increasing market acceptance and the need to meet this demand is driving the Workshop towards this release.

The clear direction of the CEN/ISSS XFS Workshop, therefore, is the delivery of a new Release 3.0 specification based
on a C API. It will be delivered with the promise of the protection of technical investment for existing applications and
the design to safeguard future developments.

The CEN/ISSS XFS Workshop gathers suppliers as well as banks and other financial service companies. A list of
companies participating in this Workshop and in support of this CWA is available from the CEN/ISSS Secretariat.

This CWA was formally approved by the XFS Workshop meeting on 2000-10-18. The specification is continuously
reviewed and commented in the CEN/ISSS Workshop on XFS. It is therefore expected that an update of the
specification will be published in due time as a CWA, superseding this revision 3.0.

The CWA is published as a multi-part document, consisting of:

Part 1: Application Programming Interface (API) - Service Provider Interface (SPI); Programmer's Reference

Part 2: Service Classes Definition; Programmer's Reference

Part 3: Printer Device Class Interface - Programmer's Reference

Part 4: Identification Card Device Class Interface - Programmer's Reference

Part 5: Cash Dispenser Device Class Interface - Programmer's Reference

Part 6: PIN Keypad Device Class Interface - Programmer's Reference

Part 7: Check Reader/Scanner Device Class Interface - Programmer's Reference

Part 8: Depository Device Class Interface - Programmer's Reference

Part 9: Text Terminal Unit Device Class Interface - Programmer's Reference

Part 10: Sensors and Indicators Unit Device Class Interface - Programmer's Reference

Part 11: Vendor Dependent Mode Device Class Interface - Programmer's Reference

Part 12: Camera Device Class Interface - Programmer's Reference

Part 13: Alarm Device Class Interface - Programmer's Reference

Part 14: Card Embossing Unit Class Interface - Programmer's Reference

Part 15: Cash In Module Device Class Interface- Programmer's Reference

Part 16: Application Programming Interface (API) - Service Provider Interface (SPI) - Migration from Version 2.0 (see
CWA 13449) to Version 3.0 (this CWA) - Programmer's Reference

Part 17: Printer Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Page 4
CWA 14050-22:2000

Part 18: Identification Card Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 19: Cash Dispenser Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 20: PIN Keypad Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA)
- Programmer's Reference

Part 21: Depository Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Part 22: Text Terminal Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this
CWA) - Programmer's Reference

Part 23: Sensors and Indicators Unit Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version
3.0 (this CWA) - Programmer's Reference

Part 24: Camera Device Class Interface - Migration from Version 2.0 (see CWA 13449) to Version 3.0 (this CWA) -
Programmer's Reference

Part 25: Identification Card Device Class Interface - PC/SC Integration Guidelines

In addition to these Programmer's Reference specifications, the reader of this CWA is also referred to a complementary
document, called Release Notes. The Release Notes contain clarifications and explanations on the CWA specifications,
which are not requiring functional changes. The current version of the Release Notes is available online from
http://www.cenorm.be/isss/Workshop/XFS.

The information in this document represents the Workshop's current views on the issues discussed as of the date of
publication. It is furnished for informational purposes only and is subject to change without notice. CEN/ISSS makes
no warranty, express or implied, with respect to this document.

Page 5
CWA 14050-22:2000

1. General

UNICODE support for field values, key stroke events during text entry and a few clarifications have been added.
For all commands, the error code and event sections have been amended to explicitly mention that the generic values
from the API document can also be returned.

2. New Chapters

2.1 References

1. XFS Application Programming Interface (API)/Service Provider Interface (SPI), Programmer’s Reference
Revision 3.0, October 18, 2000

2.2 XFS form/media definition files in multi-vendor environments

Although for most Service Providers directory location and extension of XFS form/media definition files are
configurable through the registry, the capabilities of Service Providers and or actual hardware may vary. Therefore the
following considerations should be taken into account when applications use XFS form definition files with the purpose
of running in a multi-vendor environment:

- Physical display area dimensions may vary from one text terminal to another
- Just-in-time form loading may not be supported by all Service Providers, which makes it impossible to create

dynamic form files just before displaying them (which in return means that only the display data of the forms can be
changed, not the -layout data such as field positions)

- Some form/media definition keywords may not be supported due to limitations of the hardware or software

3. New Info Commands

3.1 WFS_INF_TTU_KEY_DETAIL

Description This command returns information about the Keys (buttons) supported by the device.

This command should be issued to determine which Keys are available.

Input Param None.
Output Param LPWFSTTUKEYDETAIL lpKeyDetail;

typedef struct _wfs_ttu_key_detail
{
LPSTR lpszKeys;
LPWSTR lpwszUNICODEKeys;
LPWORD lpwCommandKeys;
} WFSTTUKEYDETAIL, * LPWFSTTUKEYDETAIL;

lpszKeys
String which holds the printable characters (numeric and alphanumeric keys) on the Text Terminal
Unit, e.g. “0123456789ABCabc���” if those text terminal input keys are present. This string is a
NULL pointer if capability fwCharSupport equals WFS_TTU_UNICODE or if no keys of this type
are present on the device.

lpwszUNICODEKeys
String which holds the numeric and alphanumeric keys on the Text Terminal Unit like lpszKeys but

Page 6
CWA 14050-22:2000

in UNICODE format. This string is a NULL pointer if capability fwCharSupport equals
WFS_TTU_ASCII or if no keys of this type are present on the device.

lpwCommandKeys
Array of command keys on the Text Terminal Unit. The array is terminated with a zero value. This
array is a NULL pointer if no keys of this type are present on the device.

WFS_TTU_CK_ENTER

WFS_TTU_CK_CANCEL

WFS_TTU_CK_CLEAR

WFS_TTU_CK_BACKSPACE

WFS_TTU_CK_HELP

WFS_TTU_CK_00

WFS_TTU_CK_000

WFS_TTU_CK_ARROWUP

WFS_TTU_CK_ARROWDOWN

WFS_TTU_CK_ARROWLEFT

WFS_TTU_CK_ARROWRIGHT

The following values may be used as vendor dependent keys.

WFS_TTU_CK_OEM1

WFS_TTU_CK_OEM2

WFS_TTU_CK_OEM3

WFS_TTU_CK_OEM4

WFS_TTU_CK_OEM5

WFS_TTU_CK_OEM6

WFS_TTU_CK_OEM7

WFS_TTU_CK_OEM8

WFS_TTU_CK_OEM9

WFS_TTU_CK_OEM10

WFS_TTU_CK_OEM11

WFS_TTU_CK_OEM12

The following keys are used for Function Descriptor Keys.

WFS_TTU_CK_FDK01

WFS_TTU_CK_FDK02

WFS_TTU_CK_FDK03

WFS_TTU_CK_FDK04

WFS_TTU_CK_FDK05

WFS_TTU_CK_FDK06

WFS_TTU_CK_FDK07

WFS_TTU_CK_FDK08

WFS_TTU_CK_FDK09

Page 7
CWA 14050-22:2000

WFS_TTU_CK_FDK10

WFS_TTU_CK_FDK11

WFS_TTU_CK_FDK12

WFS_TTU_CK_FDK13

WFS_TTU_CK_FDK14

WFS_TTU_CK_FDK15

WFS_TTU_CK_FDK16

WFS_TTU_CK_FDK17

WFS_TTU_CK_FDK18

WFS_TTU_CK_FDK19

WFS_TTU_CK_FDK20

WFS_TTU_CK_FDK21

WFS_TTU_CK_FDK22

WFS_TTU_CK_FDK23

WFS_TTU_CK_FDK24

WFS_TTU_CK_FDK25

WFS_TTU_CK_FDK26

WFS_TTU_CK_FDK27

WFS_TTU_CK_FDK28

WFS_TTU_CK_FDK29

WFS_TTU_CK_FDK30

WFS_TTU_CK_FDK31

WFS_TTU_CK_FDK32

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments None.

4. Changes to existing Info Commands

4.1 WFS_INF_TTU_STATUS

Description This command reports the full range of information available, including the information that is
provided by the service provider.

Input Param None.

Output Param LPWFSTTUSTATUS lpStatus;

Page 8
CWA 14050-22:2000

typedef struct _wfs_ttu_status
{
WORD fwDevice;
WORD wKeyboard;
WORD wKeyLock;
WORD wLEDs[WFS_TTU_LEDS_MAX];
WORD wDisplaySizeX;
WORD wDisplaySizeY;
LPSTR lpszExtra;
} WFSTTUSTATUS, * LPWFSTTUSTATUS;

fwDevice
Specifies the state of the text terminal unit as one of the following flags:
Value Meaning
WFS_TTU_DEVONLINE The device is on-line (i.e., powered on and operable).
WFS_TTU_DEVOFFLINE The device is off-line (e.g., the operator has taken the device

offline by turning a switch or pulling out the device).
WFS_TTU_DEVPOWEROFF The device is powered off or physically not connected.
WFS_TTU_DEVBUSY The device is busy and unable to process an execute

command at this time.
WFS_TTU_DEVNODEVICE There is no device intended to be there; e.g. this type of self

service machine does not contain such a device or it is
internally not configured.

WFS_TTU_DEVHWERROR The device is inoperable due to a hardware error.
WFS_TTU_DEVUSERERROR The device is inoperable because a person is preventing

proper device operation.

wKeyboard
Specifies the state of the keyboard in the text terminal unit as one of the following flags:
Value Meaning
WFS_TTU_KBDON The keyboard is activated.
WFS_TTU_KBDOFF The keyboard is not activated.
WFS_TTU_KBDNA The keyboard is not available.

wKeyLock
Specifies the state of the keyboard lock of the text terminal unit as one of the following flags:
Value Meaning
WFS_TTU_KBDLOCKON The keyboard lock switch is activated.
WFS_TTU_KBDLOCKOFF The keyboard lock switch is not activated.
WFS_TTU_KBDLOCKNA The keyboard lock switch is not available.

wLEDs [WFS_TTU_LEDS_MAX]
Specifies the state of the LEDs. The maximum guidance light index is WFS_TTU_LEDS_MAX.
The number of available LEDs can be retrieved with the WFS_INF_TTU_CAPABILITIES info
command. All member elements in this array are specified as one of the following flags:
Value Meaning
WFS_TTU_LEDNA The status is not available.
WFS_TTU_LEDOFF The LED is turned off.
WFS_TTU_LEDSLOWFLASH The LED is blinking slowly.
WFS_TTU_LEDMEDIUMFLASH The LED is blinking medium frequency.
WFS_TTU_LEDQUICKFLASH The LED is blinking quickly .
WFS_TTU_LEDCONTINUOUS The light is turned on continuous (steady).

wDisplaySizeX
Specifies the horizontal size of the display of the text terminal unit (the number of columns that can
be displayed).

wDisplaySizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be
displayed).

Page 9
CWA 14050-22:2000

lpszExtra
Specifies a list of vendor-specific, or any other extended, information. The information is returned
as a series of "key=value" strings so that it is easily extensible by service providers. Each string will
be null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

4.2 WFS_INF_TTU_CAPABILITIES

Description This command is used to retrieve the capabilities of the text terminal unit.

Input Param None.

Output Param LPWFSTTUCAPS lpCaps;

typedef struct _wfs_ttu_caps
{
WORD wClass;
WORD fwType;
LPWFSTTURESOLUTION * lppResolutions;
WORD wNumOfLEDs;
WORD fwKeys ; (NOTE – This field has been replaced by the

WFS_INF_TTU_KEY_DETAIL info command)
BOOL bKeyLock;
BOOL bDisplayLight;
BOOL bCursor;
BOOL bForms;
WORD fwCharSupport ;
LPSTR lpszExtra;
} WFSTTUCAPS, * LPWFSTTUCAPS;

wClass
Specifies the logical service class, value is:
WFS_SERVICE_CLASS_TTU

fwType
Specifies the type of the text terminal unit as one of the following flags:
Value Meaning
WFS_TTU_FIXED The text terminal unit is a fixed device.
WFS_TTU_REMOVABLE The text terminal unit is a removable device.

lppResolutions
Pointer to a NULL terminated array of pointers WFSTTURESOLUTION structures. Specifies the
resolutions supported by the physical display device. (For a definition of WFSTTURESOLUTION
see command WFS_CMD_TTU_SET_RESOLUTION).

wNumOfLEDs
Specifies the number of LEDs available in this text terminal unit.

bKeyLock
Specifies whether the text terminal unit has a key lock switch. The value can be either FALSE (not
available) or TRUE (available).

bDisplayLight
Specifies whether the text terminal unit has a display light. The value can be either FALSE (not
available) or TRUE (available).

bCursor
Specifies whether the text terminal unit display supports a cursor. The value can be either FALSE
(not available) or TRUE (available).

Page 10
CWA 14050-22:2000

bForms
Specifies whether the text terminal unit service supports forms oriented input and output. The value
can be either FALSE (not available) or TRUE (available).

fwCharSupport
One or more flags specifying the Character Sets, in addition to single byte ASCII, supported by the
service provider:
Value Meaning
WFS_TTU_ASCII ASCII is supported for XFS forms.
WFS_TTU_UNICODE UNICODE is supported for XFS forms.

For fwCharSupport, a service provider can support ONLY ASCII forms or can support BOTH
ASCII and UNICODE forms. A service provider can not support UNICODE forms without also
supporting ASCII forms.

lpszExtra
Specifies a list of vendor-specific, or any other extended, information. The information is returned
as a series of "key=value" strings so that it is easily extensible by service providers. Each string will
be null-terminated, with the final string terminating with two null characters.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Comments Applications which require or expect specific information to be present in the lpszExtra parameter
may not be device or vendor-independent.

4.3 WFS_INF_TTU_QUERY_FORM

Description This command is used to retrieve details of the definition of a specified form.

Input Param LPSTR lpszFormName;

lpszFormName
Points to the null-terminated form name on which to retrieve details.

Output Param LPWFSTTUFRMHEADER lpFrmHeader;

typedef struct _wfs_ttu_frm_header
{
LPSTR lpszFormName;
WORD wWidth;
WORD wHeight;
WORD wVersionMajor;
WORD wVersionMinor;
WORD fwCharSupport ;
LPSTR lpszFields;
} WFSTTUFRMHEADER, * LPWFSTTUFRMHEADER;

lpszFormName
Specifies the null-terminated name of the form.

wWidth
Specifies the width of the form in columns.

wHeight
Specifies the height of the form in rows.

wVersionMajor
Specifies the major version of the form.

wVersionMinor
Specifies the minor version of the form.

Page 11
CWA 14050-22:2000

fwCharSupport
A single flag indicating whether the form is encoded in ASCII or UNICODE:
Value Meaning
WFS_TTU_ASCII XFS form is encoded in ASCII.
WFS_TTU_UNICODE XFS form is encoded in UNICODE.

lpszFields
Pointer to a list of null-terminated field names, with the final name terminating with two null
characters.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_TTU_FORMINVALID The specified form is invalid.

Comments None.

4.4 WFS_INF_TTU_QUERY_FIELD

Description This command is used to retrieve details of the definition of a single or all fields on a specified form.

Input Param LPWFSTTUQUERYFIELD lpQueryField;

typedef struct _wfs_ttu_query_field
{
LPSTR lpszFormName;
LPSTR lpszFieldName;
} WFSTTUQUERYFIELD, * LPWFSTTUQUERYFIELD;

lpszFormName
Pointer to the null-terminated form name.

lpszFieldName
Pointer to the null-terminated name of the field about which to retrieve details. If this value is a
NULL pointer, then retrieve details for all fields on the form.

Output Param LPWFSTTUFRMFIELD * lppFields;

lppFields
Pointer to a null-terminated array of pointers to field definition structures:

typedef struct _wfs_ttu_frm_field
{
LPSTR lpszFieldName;
WORD fwType;
WORD fwClass;
WORD fwAccess;
WORD fwOverflow;
LPSTR lpszFormat;
} WFSTTUFRMFIELD, * LPWFSTTUFRMFIELD;

lpszFieldName
Pointer to the null-terminated field name.

fwType
Specifies the type of field and can be one of the following:

Value Meaning
WFS_TTU_FIELDTEXT A text field.
WFS_TTU_FIELDINVISIBLE An invisible text field.
WFS_TTU_FIELDPASSWORD A password field, input is echoed as ‘*’.

Page 12
CWA 14050-22:2000

fwClass
Specifies the class of the field and can be one of the following:

Value Meaning
WFS_TTU_CLASSSTATIC The field data cannot be set by the application.
WFS_TTU_CLASSOPTIONAL The field data can be set by the application.
WFS_TTU_CLASSREQUIRED The field data must be set by the application.

fwAccess
Specifies whether the field is to be used for input, output, or both and can be a combination of the
following bit-flags:

Value Meaning
WFS_TTU_ACCESSREAD The field is used for input from the physical device.
WFS_TTU_ACCESSWRITE The field is used for output to the physical device.

fwOverflow
Specifies how an overflow of field data should be handled and can be one of the following:

Value Meaning
WFS_TTU_OVFTERMINATE Return an error and terminate display of the form.
WFS_TTU_OVFTRUNCATE Truncate the field data to fit in the field.
WFS_TTU_OVFOVERWRITE Print the field data beyond the extents of the field

boundary.

lpszFormat
Format string as defined in the form for this field.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_TTU_FORMINVALID The specified form is invalid.
WFS_ERR_TTU_FIELDNOTFOUND The specified field cannot be found.
WFS_ERR_TTU_FIELDINVALID The specified field is invalid.

Comments None.

5. New Execute Commands

5.1 WFS_CMD_TTU_RESET

Description Sends a service reset to the service provider. This command clears the screen and the keyboard buffer.

Input Param None

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments This command is used by an application control program to cause a device to reset itself to a known
good condition.

Page 13
CWA 14050-22:2000

6. Changes to existing Execute Commands

6.1 WFS_CMD_TTU_CLEARSCREEN

Description This command clears the specified area of the text terminal unit screen. The cursor is positioned to the
upper left corner of the cleared area.

Input Param LPWFSTTUCLEARSCREEN lpClearScreen;

struct _wfs_ttu_clear_screen
{
WORD wPositionX;
WORD wPositionY;
WORD wWidth;
WORD wHeight;
} WFSTTUCLEARSCREEN, * LPWFSTTUCLEARSCREEN;

wPositionX
Specifies the horizontal position of the area to be cleared.

wPositionY
Specifies the vertical position of the area to be cleared.

wWidth
Specifies the width of the area to be cleared. This value must be positive.

wHeight
Specifies the height of the area to be cleared. This value must be positive.

Output Param None.

Error Codes Only the generic error codes defined in [Ref. 1] can be generated by this command.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments If the input parameter is a NULL pointer, the whole screen will be cleared.

6.2 WFS_CMD_TTU_WRITE_FORM (former WFS_CMD_TTU_DISPLAY_FORM)

Description This command is used to display a form by merging the supplied variable field data with the defined
form and field data specified in the form.

Input Param LPWFSTTUDISPLAYFORM lpWriteform;

typedef struct _ wfs_ttu_write_form
{
LPSTR lpszFormName;
BOOL bClearScreen;
LPSTR lpszFields;
LPWSTR lpszUNICODEFields;
} WFSTTUWRITEFORM, * LPWFSTTUWRITEFORM;

lpszFormName
Pointer to the null-terminated form name.

bClearScreen
Specifies whether the screen is cleared before displaying the form (TRUE) or not (FALSE).

lpszFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the entire field string terminating with two null characters, e.g. Field1=123/0Field2=456/0/0.
The <FieldValue> stands for a string containing all the printable characters (numeric and
alphanumeric) to display on the text terminal unit key pad for this field.

Page 14
CWA 14050-22:2000

lpszUNICODEFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire field string terminating with two null characters, e.g.
Field1=123/0Field2=456/0/0 (UNICODE). The <FieldValue> stands for a UNICODE string
containing all the printable characters (numeric and alphanumeric) to display on the text terminal
unit key pad for this field.

Note: The lpszUNICODEFields field should only be used if the form is encoded in UNICODE
representation. This can be determined with the WFS_TTU_INF_QUERY_FORM command. The
use of lpszFields and lpszUNICODEFields fields is mutually exclusive.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form definition cannot be found.
WFS_ERR_TTU_FORMINVALID The specified form definition is invalid.
WFS_ERR_TTU_MEDIAOVERFLOW The form overflowed the media.
WFS_ERR_TTU_FIELDSPECFAILURE The syntax of the lpszFields member is invalid.
WFS_ERR_TTU_CHARSETDATA Character set(s) supported by service provider is

inconsistent with use of lpszFields or
lpszUNICODEFields fields.

WFS_ERR_TTU_FIELDERROR An error occurred while processing a field, causing
termination of the display request

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_TTU_FIELDERROR A fatal error occurred while processing a field.
WFS_EXEE_TTU_FIELDWARNING A non-fatal error occurred while processing a field.

Comments None.

6.3 WFS_CMD_TTU_READ_FORM

Description This command is used to read data from input fields on the specified form.

Input Param LPWFSTTUREADFORM lpReadForm;

typedef struct _wfs_ttu_read_form
{
LPSTR lpszFormName;
LPSTR lpszFieldNames;
} WFSTTUREADFORM, * LPWFSTTUREADFORM;

lpszFormName
Pointer to the null-terminated name of the form.

lpszFieldNames
Pointer to a list of null-terminated field names from which to read input data, with the final name
terminating with two null characters. If this value is a NULL pointer, then data is read from all input
fields on the form.

Output Param LPWFSTTUREADFORMOUTlpReadFormOut ;

typedef struct _ wfs_ttu_read_form_out
{
LPSTR lpszFields ;
LPWSTR lpszUNICODEFields ;
} WFSTTUREADFORMOUT, * LPWFSTTUREADFORMOUT;

Page 15
CWA 14050-22:2000

lpszFields
Pointer to a series of "<FieldName>=<FieldValue>" strings, where each string is null-terminated
with the final string terminating with two null characters, e.g. Field1=123/0Field2=456/0/0. The
<FieldValue> stands for a string containing all the printable characters (numeric and alphanumeric)
read from the text terminal unit key pad for this field. This parameter is a NULL pointer if the
capability fwCharSupport equals WFS_TTU_UNICODE.

lpszUNICODEFields
Pointer to a series of "<FieldName>=<FieldValue>" UNICODE strings, where each string is null-
terminated with the entire field string terminating with two null characters, e.g.
Field1=123/0Field2=456/0/0 (UNICODE). The <FieldValue> stands for a UNICODE string
containing all the printable characters (numeric and alphanumeric) read from the text terminal unit
key pad for this field. This parameter is a NULL pointer if the capability fwCharSupport equals
WFS_TTU_ASCII.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_TTU_FORMNOTFOUND The specified form cannot be found.
WFS_ERR_TTU_FORMINVALID The specified form definition is invalid.
WFS_ERR_TTU_FIELDSPECFAILURE The syntax of the lpszFieldNames member is invalid.
WFS_ERR_TTU_KEYCANCELED The read operation was terminated by pressing the

<CANCEL>-key.
WFS_ERR_TTU_FIELDERROR An error occurred while processing a field, causing

termination of the read request.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning
WFS_EXEE_TTU_FIELDERROR A fatal error occurred while processing a field.
WFS_EXEE_TTU_FIELDWARNING A non-fatal error occurred while processing a field..

Comments None.

6.4 WFS_CMD_TTU_WRITE

Description This command displays the specified text on the display of the text terminal unit . The specified text
may include the control characters CR (Carriage Return) and LF (Line Feed). The control characters
can be included in the text as CR, or LF, or CR LF, or LF CR and all combinations will perform the
function of relocating the cursor position to the left hand side of the display on the next line down. If
the text will overwrite the display area then the display will scroll.

Input Param LPWFSTTUWRITE lpWrite;

typedef struct _wfs_ttu_write
{
WORD fwMode;
SHORT wPosX;
SHORT wPosY;
WORD fwTextAttr;
LPSTR lpsText;
LPWSTR lpsUNICODEText ;
} WFSTTUWRITE, * LPWFSTTUWRITE;

Page 16
CWA 14050-22:2000

fwMode
Specifies whether the position of the output is absolute or relative to the current cursor position.
Possible values are:
Value Meaning
WFS_TTU_POSRELATIVE The output is positioned relative to the current cursor

position.
WFS_TTU_POSABSOLUTE The output is positioned absolute at the position specified in

wPosX and wPosY.

wPosX
If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute horizontal position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a horizontal offset relative to the
current cursor position as a zero (0) based value.

wPosY
If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute vertical position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a vertical offset relative to the current
cursor position as a zero (0) based value.

fwTextAttr
Specifies the text attributes used for displaying the text as a combination of the following flags. If
none of the following attribute flags are selected then the text will be displayed as TEXTNORMAL.
Value Meaning
WFS_TTU_TEXTUNDERLINE The displayed text will be underlined.
WFS_TTU_TEXTINVERTED The displayed text will be inverted.
WFS_TTU_TEXTFLASH The displayed text will be flashing.

lpsText
Specifies the text that will be displayed.

lpsUNICODEText
Specifies the UNICODE text that will be displayed.

Note: lpsText and lpsUNICODEText are mutually exclusive.

Output Param None.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_TTU_CHARSETDATA Character set(s) supported by service provider is

inconsistent with use of lpsText or lpsUNICODEText
fields.

Events Only the generic events defined in [Ref. 1] can be generated by this command.

Comments None.

6.5 WFS_CMD_TTU_READ

Description This command activates the keyboard of the text terminal unit for input of the specified number of
characters. Depending on the specified flush mode the input buffer is cleared. During this command,
pressing an active key results in a WFS_EXEE_TTU_KEY event containing the key details. On
completion of the command (when the maximum number of keys have been pressed or a terminator
key is pressed), the entered string, as interpreted by the service provider, is returned. The service
provider takes command keys into account when interpreting the data.

Page 17
CWA 14050-22:2000

Input Param LPWFSTTUREAD lpRead;

typedef struct _wfs_ttu_read
{
WORD wNumOfChars;
WORD fwMode;
SHORT wPosX;
SHORT wPosY;
WORD fwEchoMode;
WORD fwEchoAttr;
BOOL bCursor;
BOOL bFlush;
BOOL bAutoEnd;
LPSTR lpszActiveKeys ;
LPWSTR lpwszActiveUNICODEKeys ;
LPWORD lpwActiveCommandKeys ;
LPWORD lpwTerminateCommandKeys ;
} WFSTTUREAD, * LPWFSTTUREAD;

wNumOfChars
Specifies the number of printable characters (numeric and alphanumeric keys) that will be read from
the text terminal unit key pad. All command keys like WFS_TTU_CK_ENTER,
WFS_TTU_CK_FDK01 will not be counted.

fwMode
Specifies where the cursor is positioned for the read operation. Possible values are:
Value Meaning
WFS_TTU_POSRELATIVE The cursor is positioned relative to the current cursor

position.
WFS_TTU_POSABSOLUTE The cursor is positioned absolute at the position specified in

wPosX and wPosY.

wPosX
If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute horizontal position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a horizontal offset relative to the
current cursor position as a zero (0) based value.

wPosY
If fwMode is set to WFS_TTU_POSABSOLUTE, this specifies the absolute vertical position. If
fwMode is set to WFS_TTU_POSRELATIVE this specifies a vertical offset relative to the current
cursor position as a zero (0) based value.

fwEchoMode
Specifies how the user input is echoed to the screen as one of the following flags:
Value Meaning
WFS_TTU_ECHOTEXT The user input is echoed to the screen.
WFS_TTU_ECHOINVISIBLE The user input is not echoed to the screen.
WFS_TTU_ECHOPASSWORD The keys entered by the user are echoed as the replace

character on the screen.
fwEchoAttr
Specifies the text attributes with which the user input is echoed to the screen as a combination of the
following flags. If none of the following attribute flags are selected then the text will be displayed as
TEXTNORMAL.
Value Meaning
WFS_TTU_TEXTUNDERLINE The displayed text will be underlined.
WFS_TTU_TEXTINVERTED The displayed text will be inverted.
WFS_TTU_TEXTFLASH The displayed text will be flashing.

bCursor
Specifies whether the cursor is visible (TRUE) or invisible (FALSE).

Page 18
CWA 14050-22:2000

bFlush
Specifies whether the keyboard input buffer is cleared before allowing for user input (TRUE) or not
(FALSE).

bAutoEnd
Specifies whether the command input is automatically ended by the Service Provider if the
maximum number of printable characters as specified with wNumOfChars is entered.

lpszActiveKeys
String which specifies the numeric and alphanumeric keys on the Text Terminal Unit, e.g.
“12ABab”, to be active during the execution of the command. Devices having a shift key interpret
this parameter differently from those that do not have a shift key. For devices having a shift key,
specifying only the upper case of a particular letter enables both upper and lower case of that key,
but the device converts lower case letters to upper case in the output parameter. To enable both
upper and lower case keys, and have both upper and lower case letters returned, specify both the
upper and lower case of the letter (e.g. "12AaBb"). For devices not having a shift key, specifying
either the upper case only (e.g. "12AB"), or specifying both the upper and lower case of a particular
letter (e.g. "12AaBb"), enables that key and causes the device to return the upper case of the letter
in the output parameter. For both types of device, specifying only lower case letters (e.g. "12ab")
produces a key invalid error. This parameter is a NULL pointer if capability fwCharSupport equals
WFS_TTU_UNICODE or if no keys of this type are active keys.

lpwszActiveUNICODEKeys
String which specifies the numeric and alphanumeric keys on the Text Terminal Unit, e.g.
“12ABab” (UNICODE), to be active during the execution of the command. Devices having a shift
key interpret this parameter differently from those that do not have a shift key. For devices having a
shift key, specifying only the upper case of a particular letter enables both upper and lower case of
that key, but the device converts lower case letters to upper case in the output parameter. To enable
both upper and lower case keys, and have both upper and lower case letters returned, specify both
the upper and lower case of the letter (e.g. "12AaBb"). For devices not having a shift key,
specifying either the upper case only (e.g. "12AB"), or specifying both the upper and lower case of
a particular letter (e.g. "12AaBb"), enables that key and causes the device to return the upper case
of the letter in the output parameter. For both types of device, specifying only lower case letters
(e.g. "12ab") produces a key invalid error. This parameter is a NULL pointer if capability
fwCharSupport equals WFS_TTU_ASCII or if no keys of this type are active keys.

lpwActiveCommandKeys
Array specifying the command keys which are active during the execution of the command. The
array is terminated with a zero value and this array is a NULL pointer if no keys of this type are
active keys.

lpwTerminateCommandKeys
Array specifying the command keys which must terminate the execution of the command. The array
is terminated with a zero value and this array is a NULL pointer if no keys of this type are terminate
keys.

Output Param LPWFSTTUREADIN lpReadIn ;

typedef struct _ wfs_ttu_read_in
{
LPSTR lpszInput ;
LPWSTR lpszUNICODEInput ;
} WFSTTUREADIN, * LPWFSTTUREADIN;

lpszInput
Specifies a zero terminated string containing all the printable characters (numeric and
alphanumeric) read from the text terminal unit key pad. This parameter is a NULL pointer if the
capability fwCharSupport equals WFS_TTU_UNICODE.

Page 19
CWA 14050-22:2000

lpszUNICODEInput
Specifies a zero terminated string containing all the printable characters (numeric and alphanumeric)
read from the text terminal unit key pad. This parameter is a NULL pointer if the capability
fwCharSupport equals WFS_TTU_ASCII.

Note: The following keys are not printable and will not be returned in the output parameter
lpszInput or lpszUNICODEInput, but they may effect the buffer if active:

WFS_TTU_CK_CLEAR Will clear the buffer. The number of printable characters pressed
will be set to zero.

WFS_TTU_CK_BACKSPACE Will cause the last printable character in the buffer to be
removed. The number of printable characters pressed will be
reduced by one, unless the number of printable characters
pressed was zero.

WFS_TTU_CK_00 Will add a double zero ‘00’ string to the buffer. The number of
printable characters pressed will be increased by two.

WFS_TTU_CK_000 will add a triple zero ‘000’ string to the buffer. The number of
printable characters pressed will be increased by three.

Error Codes In addition to the generic error codes defined in [Ref. 1], the following error codes can be generated
by this command:

Value Meaning
WFS_ERR_TTU_KEYINVALID At least one of the specified keys is invalid.
WFS_ERR_TTU_KEYNOTSUPPORTED At least one of the specified keys is not supported by

the service provider.
WFS_ERR_TTU_NOACTIVEKEYS There are no active keys specified.

Events In addition to the generic events defined in [Ref. 1], the following events can be generated by this
command:

Value Meaning

WFS_EXEE_TTU_KEY An active key on the Text Terminal Unit has been
pressed. Note: A command key press will not result in a
character being displayed.

Comments None.

7. New Events

7.1 WFS_EXEE_TTU_FIELDERROR

Description This event specifies that a fatal error has occurred while processing a field.

Event Param LPWFSTTUFIELDFAIL lpFieldFail;

typedef struct _wfs_ttu_field_failure
{
LPSTR lpszFormName;
LPSTR lpszFieldName;
WORD wFailure;
} WFSTTUFIELDFAIL, * LPWFSTTUFIELDFAIL;

lpszFormName
Points to the null-terminated form name.

lpszFieldName
Points to the null-terminated field name.

Page 20
CWA 14050-22:2000

wFailure
Specifies the type of failure and can be one of the following:
Value Meaning
WFS_TTU_FIELDREQUIRED The specified field must be supplied by the application.
WFS_TTU_FIELDSTATICOVWR The specified field is static and thus cannot be overwritten by

the application.
WFS_TTU_FIELDOVERFLOW The value supplied for the specified fields is too long.
WFS_TTU_FIELDNOTFOUND The specified field does not exist.
WFS_TTU_FIELDNOTREAD The specified field is not an input field.
WFS_TTU_FIELDNOTWRITE An attempt was made to write to an input field.
WFS_TTU_FIELDTYPENOTSUPPORTED The form field type is not supported with

device.
WFS_TTU_CHARSETFORM Service provider does not support character set specified in

form.
Comments None.

7.2 WFS_EXEE_TTU_FIELDWARNING

Description This event is used to specify that a non-fatal error has occurred while processing a field.

Event Param LPWFSTTUFIELDFAIL lpFieldFail;

as defined in the section describing WFS_EXEE_TTU_FIELDERROR.

Comments None.

7.3 WFS_EXEE_TTU_KEY

Description This event specifies that any active key has been pressed at the TTU during the
WFS_CMD_TTU_READ command. In addition to giving the application more details about
individual key presses this information may also be used if the device has no internal display unit and
the application has to manage the display of the entered digits.

Event Param LPWFSTTUKEY lpKey;

typedef struct _wfs_ttu_key
{
CHAR cKey;
WORD wUNICODEKey;
WORD wCommandKey;
} WFSTTUKEY, * LPWFSTTUKEY;

cKey
On a numeric or alphanumeric key press this parameter holds the value of the key pressed. This
value is WFS_TTU_NOKEY if no numeric or alphanumeric key was pressed or if capability
fwCharSupport equals WFS_TTU_UNICODE.

wUNICODEKey
On a numeric or alphanumeric key press this parameter holds the value of the key pressed in
UNICODE format. This value is WFS_TTU_NOKEY if no numeric or alphanumeric key was
pressed or if capability fwCharSupport equals WFS_TTU_ASCII.

wCommandKey
On a Command key press this parameter holds the value of the Command key pressed, e.g.
WFS_TTU_CK_ENTER. This value is WFS_TTU_NOKEY when no command key was pressed.

Note: Only one of the parameters cKey, wUNICODEKey, wCommandKey can have the value of a
valid key, the others must be set to WFS_TTU_NOKEY.

Comments None.

Page 21
CWA 14050-22:2000

8. Changes to existing Events

No changes

9. Changes to Form and Field Definitions

This section outlines the format of the definitions of forms, the fields within them, and the media on which they are
printed.

9.1 Definition Syntax

The syntactic rules for form, field and media definitions are as follows:

� White space space, tab

� Line continuation backslash (\)

� Line termination CR, LF, CR/LF; line termination ends a “keyword section”
(a keyword and its value[s])

� Keywords must be all upper case

� Names (field/media/font names) any case; case is preserved;
service providers are case sensitive

� Strings all strings must be enclosed in double quote characters (");
standard C escape sequences are allowed.

� Comments start with two forward slashes (//), end at line termination

Other notes:

� If a keyword is present, all its values must be specified; default values are used only if the keyword is absent.

� Values that are character strings are marked with asterisks in the definitions below, and must be quoted as specified
above.

� Fields are processed in the sequence they are defined in the form.

� The order of attributes within a form is not mandatory; the attributes may be defined in any order.

� All forms can be represented using either ISO 646 (ANSI) or UNICODE character encoding. If the UNICODE
representation is used then all Names and Strings are restricted to an internal representation of ISO 646 (ANSI)
characters. Only the INITIALVALUE and FORMAT keyword values can have double byte values outside of the
ISO 646 (ANSI) character set.

� If forms character encoding is UNICODE then, consistent with the UNICODE standard, the file prefix must be in
little endian (xFFFE) or big endian (xFEFF) notation, such that UNICODE encoding is recognized.

Page 22
CWA 14050-22:2000

9.2 Field Definition 1

XFSFIELD fieldname
*

BEGIN

(required) POSITION x, Horizontal position (relative to left side of form)

y Vertical position (relative to top of form)

(required) SIZE width, Field width

height Field height

TYPE fieldtype Type of field:
TEXT (default)
INVISIBLE
PASSWORD (contents is echoed with ‘*’)

CLASS class Field class
OPTIONAL (default)
STATIC
REQUIRED

KEYS keys Accepted input key types:
NUMERIC
HEXADECIMAL
ALPHANUMERIC

ACCESS access Access rights of field
WRITE (default)
READ
READWRITE

OVERFLOW overflow Action on field overflow:
TERMINATE (default)
TRUNCATE
OVERWRITE

STYLE style Display attributes as a combination of the following,
ORed together using the "|" operator:

NORMAL (default)
UNDER (single underline)
INVERTED
FLASHING

HORIZONTAL justify Horizontal alignment of field contents
LEFT (default)
RIGHT
CENTER

FORMAT formatstri
ng*

This is an application defined input field describing how
the application should format the data. This may be
interpreted by the service provider.

INITIALVALUE value* Initial value.

END

1 Attributes are not required in any mandatory order within a Field Definition.

Page 23
CWA 14050-22:2000

10. Changes to C - Header file

/**
* *
* xfsttu.h XFS - definitions *
* for the Text Terminal Unit - services *
* *
* Version 3.00 (10/18/00) *
* *
**/

#ifndef __INC_XFSTTU__H
#define __INC_XFSTTU__H

#ifdef __cplusplus
extern "C" {
#endif

#include <xfsapi.h>

/* be aware of alignment */
#pragma pack(push,1)

/* values of WFSTTUCAPS.wClass */
#define WFS_SERVICE_CLASS_TTU (7)
#define WFS_SERVICE_CLASS_NAME_TTU "TTU"
#define WFS_SERVICE_CLASS_VERSION_TTU (0x0003)

#define TTU_SERVICE_OFFSET (WFS_SERVICE_CLASS_TTU * 100)

/* TTU Info Commands */
#define WFS_INF_TTU_STATUS (TTU_SERVICE_OFFSET + 1)
#define WFS_INF_TTU_CAPABILITIES (TTU_SERVICE_OFFSET + 2)
#define WFS_INF_TTU_FORM_LIST (TTU_SERVICE_OFFSET + 3)
#define WFS_INF_TTU_QUERY_FORM (TTU_SERVICE_OFFSET + 4)
#define WFS_INF_TTU_QUERY_FIELD (TTU_SERVICE_OFFSET + 5)
#define WFS_INF_TTU_KEY_DETAIL (TTU_SERVICE_OFFSET + 6)

/* TTU Command Verbs */
#define WFS_CMD_TTU_BEEP (TTU_SERVICE_OFFSET + 1)
#define WFS_CMD_TTU_CLEARSCREEN (TTU_SERVICE_OFFSET + 2)
#define WFS_CMD_TTU_DISPLIGHT (TTU_SERVICE_OFFSET + 3)
#define WFS_CMD_TTU_SET_LED (TTU_SERVICE_OFFSET + 4)
#define WFS_CMD_TTU_SET_RESOLUTION (TTU_SERVICE_OFFSET + 5)
#define WFS_CMD_TTU_DISPLAY_FORM (TTU_SERVICE_OFFSET + 6)
#define WFS_CMD_TTU_WRITE_FORM (TTU_SERVICE_OFFSET + 6)
#define WFS_CMD_TTU_READ_FORM (TTU_SERVICE_OFFSET + 7)
#define WFS_CMD_TTU_WRITE (TTU_SERVICE_OFFSET + 8)
#define WFS_CMD_TTU_READ (TTU_SERVICE_OFFSET + 9)
#define WFS_CMD_TTU_RESET (TTU_SERVICE_OFFSET + 10)

/* TTU Messages */
#define WFS_EXEE_TTU_FIELDERROR (TTU_SERVICE_OFFSET + 1)
#define WFS_EXEE_TTU_FIELDWARNING (TTU_SERVICE_OFFSET + 2)
#define WFS_EXEE_TTU_KEY (TTU_SERVICE_OFFSET + 3)

/* Values of WFSTTUSTATUS.fwDevice */
#define WFS_TTU_DEVONLINE WFS_STAT_DEVONLINE
#define WFS_TTU_DEVOFFLINE WFS_STAT_DEVOFFLINE
#define WFS_TTU_DEVPOWEROFF WFS_STAT_DEVPOWEROFF
#define WFS_TTU_DEVBUSY WFS_STAT_DEVBUSY
#define WFS_TTU_DEVNODEVICE WFS_STAT_DEVNODEVICE
#define WFS_TTU_DEVHWERROR WFS_STAT_DEVHWERROR
#define WFS_TTU_DEVUSERERROR WFS_STAT_DEVUSERERROR

/* Values of WFSTTUSTATUS.wKeyboard */
#define WFS_TTU_KBDNA (0)

Page 24
CWA 14050-22:2000

#define WFS_TTU_KBDON (1)
#define WFS_TTU_KBDOFF (2)

/* Values of WFSTTUSTATUS.wKeyLock */
#define WFS_TTU_KBDLOCKNA (0)
#define WFS_TTU_KBDLOCKON (1)
#define WFS_TTU_KBDLOCKOFF (2)

#define WFS_TTU_LEDS_MAX (8)

/* Values of WFSTTUSTATUS.fwLEDs */
#define WFS_TTU_LEDNA (0x0000)
#define WFS_TTU_LEDOFF (0x0001)
#define WFS_TTU_LEDON (0x0002)
#define WFS_TTU_LEDSLOWFLASH (0x0002)
#define WFS_TTU_LEDMEDIUMFLASH (0x0004)
#define WFS_TTU_LEDQUICKFLASH (0x0008)
#define WFS_TTU_LEDCONTINUOUS (0x0080)

/* Values of WFSTTUCAPS.fwType */
#define WFS_TTU_FIXED (0x0001)
#define WFS_TTU_REMOVABLE (0x0002)

/* Values of WFSTTUCAPS.fwCharSupport , WFSTTUWRITE.fwCharSupport */
#define WFS_TTU_ASCII (0x0001)
#define WFS_TTU_UNICODE (0x0002)

/* Values of WFSTTUFRMFIELD.fwType */
#define WFS_TTU_FIELDTEXT (0)
#define WFS_TTU_FIELDINVISIBLE (1)
#define WFS_TTU_FIELDPASSWORD (2)

/* Values of WFSTTUFRMFIELD.fwClass */
#define WFS_TTU_CLASSOPTIONAL (0)
#define WFS_TTU_CLASSSTATIC (1)
#define WFS_TTU_CLASSREQUIRED (2)

/* Values of WFSTTUFRMFIELD.fwAccess */
#define WFS_TTU_ACCESSREAD (0x0001)
#define WFS_TTU_ACCESSWRITE (0x0002)

/* Values of WFSTTUFRMFIELD.fwOverflow */
#define WFS_TTU_OVFTERMINATE (0)
#define WFS_TTU_OVFTRUNCATE (1)
#define WFS_TTU_OVFOVERWRITE (2)

/* Values of WFSTTUWRITE.fwMode */
#define WFS_TTU_POSRELATIVE (0)
#define WFS_TTU_POSABSOLUTE (1)

/* Values of WFSTTUWRITE.fwTextAttr */
#define WFS_TTU_TEXTUNDERLINE (0x0001)
#define WFS_TTU_TEXTINVERTED (0x0002)
#define WFS_TTU_TEXTFLASH (0x0004)

/* Values of WFSTTUFRMREAD.fwEchoMode */
#define WFS_TTU_ECHOTEXT (0)
#define WFS_TTU_ECHOINVISIBLE (1)
#define WFS_TTU_ECHOPASSWORD (2)

#define WFS_TTU_BEEPOFF (0x0001)
#define WFS_TTU_BEEPKEYPRESS (0x0002)
#define WFS_TTU_BEEPEXCLAMATION (0x0004)
#define WFS_TTU_BEEPWARNING (0x0008)
#define WFS_TTU_BEEPERROR (0x0010)
#define WFS_TTU_BEEPCRITICAL (0x0020)
#define WFS_TTU_BEEPCONTINUOUS (0x0080)

/* values of WFSTTUFIELDFAIL.wFailure */

Page 25
CWA 14050-22:2000

#define WFS_TTU_FIELDREQUIRED (0)
#define WFS_TTU_FIELDSTATICOVWR (1)
#define WFS_TTU_FIELDOVERFLOW (2)
#define WFS_TTU_FIELDNOTFOUND (3)
#define WFS_TTU_FIELDNOTREAD (4)
#define WFS_TTU_FIELDNOTWRITE (5)
#define WFS_TTU_FIELDTYPENOTSUPPORTED (6)
#define WFS_TTU_CHARSETFORM (7)

/* values of WFSTTUKEYDETAIL.lpwCommandKeys */

#define WFS_TTU_NOKEY (0)
#define WFS_TTU_CK_ENTER (1)
#define WFS_TTU_CK_CANCEL (2)
#define WFS_TTU_CK_CLEAR (3)
#define WFS_TTU_CK_BACKSPACE (4)
#define WFS_TTU_CK_HELP (5)
#define WFS_TTU_CK_00 (6)
#define WFS_TTU_CK_000 (7)
#define WFS_TTU_CK_ARROWUP (8)
#define WFS_TTU_CK_ARROWDOWN (9)
#define WFS_TTU_CK_ARROWLEFT (10)
#define WFS_TTU_CK_ARROWRIGHT (11)
#define WFS_TTU_CK_OEM1 (12)
#define WFS_TTU_CK_OEM2 (13)
#define WFS_TTU_CK_OEM3 (14)
#define WFS_TTU_CK_OEM4 (15)
#define WFS_TTU_CK_OEM5 (16)
#define WFS_TTU_CK_OEM6 (17)
#define WFS_TTU_CK_OEM7 (18)
#define WFS_TTU_CK_OEM8 (19)
#define WFS_TTU_CK_OEM9 (20)
#define WFS_TTU_CK_OEM10 (21)
#define WFS_TTU_CK_OEM11 (22)
#define WFS_TTU_CK_OEM12 (23)
#define WFS_TTU_CK_FDK01 (24)
#define WFS_TTU_CK_FDK02 (25)
#define WFS_TTU_CK_FDK03 (26)
#define WFS_TTU_CK_FDK04 (27)
#define WFS_TTU_CK_FDK05 (28)
#define WFS_TTU_CK_FDK06 (29)
#define WFS_TTU_CK_FDK07 (30)
#define WFS_TTU_CK_FDK08 (31)
#define WFS_TTU_CK_FDK09 (32)
#define WFS_TTU_CK_FDK10 (33)
#define WFS_TTU_CK_FDK11 (34)
#define WFS_TTU_CK_FDK12 (35)
#define WFS_TTU_CK_FDK13 (36)
#define WFS_TTU_CK_FDK14 (37)
#define WFS_TTU_CK_FDK15 (38)
#define WFS_TTU_CK_FDK16 (39)
#define WFS_TTU_CK_FDK17 (40)
#define WFS_TTU_CK_FDK18 (41)
#define WFS_TTU_CK_FDK19 (42)
#define WFS_TTU_CK_FDK20 (43)
#define WFS_TTU_CK_FDK21 (44)
#define WFS_TTU_CK_FDK22 (45)
#define WFS_TTU_CK_FDK23 (46)
#define WFS_TTU_CK_FDK24 (47)
#define WFS_TTU_CK_FDK25 (48)
#define WFS_TTU_CK_FDK26 (49)
#define WFS_TTU_CK_FDK27 (50)
#define WFS_TTU_CK_FDK28 (51)
#define WFS_TTU_CK_FDK29 (52)
#define WFS_TTU_CK_FDK30 (53)
#define WFS_TTU_CK_FDK31 (54)
#define WFS_TTU_CK_FDK32 (55)

Page 26
CWA 14050-22:2000

/* XFS TTU Errors */

#define WFS_ERR_TTU_FIELDERROR (-(TTU_SERVICE_OFFSET + 1))
#define WFS_ERR_TTU_FIELDINVALID (-(TTU_SERVICE_OFFSET + 2))
#define WFS_ERR_TTU_FIELDNOTFOUND (-(TTU_SERVICE_OFFSET + 3))
#define WFS_ERR_TTU_FIELDSPECFAILURE (-(TTU_SERVICE_OFFSET + 4))
#define WFS_ERR_TTU_FORMINVALID (-(TTU_SERVICE_OFFSET + 5))
#define WFS_ERR_TTU_FORMNOTFOUND (-(TTU_SERVICE_OFFSET + 6))
#define WFS_ERR_TTU_INVALIDLED (-(TTU_SERVICE_OFFSET + 7))
#define WFS_ERR_TTU_KEYCANCELED (-(TTU_SERVICE_OFFSET + 8))
#define WFS_ERR_TTU_MEDIAOVERFLOW (-(TTU_SERVICE_OFFSET + 9))
#define WFS_ERR_TTU_RESNOTSUPP (-(TTU_SERVICE_OFFSET + 10))
#define WFS_ERR_TTU_CHARSETDATA (-(TTU_SERVICE_OFFSET + 11))
#define WFS_ERR_TTU_KEYINVALID (-(TTU_SERVICE_OFFSET + 12))
#define WFS_ERR_TTU_KEYNOTSUPPORTED (-(TTU_SERVICE_OFFSET + 13))
#define WFS_ERR_TTU_NOACTIVEKEYS (-(TTU_SERVICE_OFFSET + 14))

/*===*/
/* TTU Info Command Structures */
/*===*/

typedef struct _wfs_ttu_status
{
 WORD fwDevice;
 WORD wKeyboard;
 WORD wKeylock;
 WORD wLEDs[WFS_TTU_LEDS_MAX];
 WORD wDisplaySizeX;
 WORD wDisplaySizeY;
 LPSTR lpszExtra;
} WFSTTUSTATUS, * LPWFSTTUSTATUS;

typedef struct _wfs_ttu_resolution
{
 WORD wSizeX;
 WORD wSizeY;
} WFSTTURESOLUTION, * LPWFSTTURESOLUTION;

typedef struct _wfs_ttu_caps
{
 WORD wClass;
 WORD fwType;
 LPWFSTTURESOLUTION * lppResolutions;
 WORD wNumOfLEDs;
 BOOL bKeyLock;
 BOOL bDisplayLight;
 BOOL bCursor;
 BOOL bForms;
 WORD fwCharSupport ;
 LPSTR lpszExtra;
} WFSTTUCAPS, * LPWFSTTUCAPS;

typedef struct _wfs_ttu_frm_header
{
 LPSTR lpszFormName;
 WORD wWidth;
 WORD wHeight;
 WORD wVersionMajor;
 WORD wVersionMinor;
 WORD fwCharSupport ;
 LPSTR lpszFields;
} WFSTTUFRMHEADER, * LPWFSTTUFRMHEADER;

typedef struct _wfs_ttu_query_field
{
 LPSTR lpszFormName;
 LPSTR lpszFieldName;
} WFSTTUQUERYFIELD, * LPWFSTTUQUERYFIELD;

Page 27
CWA 14050-22:2000

typedef struct _wfs_ttu_frm_field
{
 LPSTR lpszFieldName;
 WORD fwType;
 WORD fwClass;
 WORD fwAccess;
 WORD fwOverflow;
 LPSTR lpszFormat;
} WFSTTUFRMFIELD, * LPWFSTTUFRMFIELD;

typedef struct _ wfs_ttu_key_detail
{
 LPSTR lpszKeys ;
 LPWSTR lpwszUNICODEKeys ;
 LPWORD lpwCommandKeys;
} WFSTTUKEYDETAIL, * LPWFSTTUKEYDETAIL;

typedef struct _wfs_ttu_clear_screen
{
 WORD wPositionX;
 WORD wPositionY;
 WORD wWidth;
 WORD wHeight;
} WFSTTUCLEARSCREEN, * LPWFSTTUCLEARSCREEN;

typedef struct _wfs_ttu_disp_light
{
 BOOL bMode;
} WFSTTUDISPLIGHT, * LPWFSTTUDISPLIGHT;

typedef struct _wfs_ttu_set_leds
{
 WORD wLED;
 WORD fwCommand;
} WFSTTUSETLEDS, * LPWFSTTUSETLEDS;

typedef struct _ wfs_ttu_write_form
{
 LPSTR lpszFormName;
 BOOL bClearScreen;
 LPSTR lpszFields;
 LPWSTR lpszUNICODEFields ;
} WFSTTUWRITEFORM, * LPWFSTTUWRITEFORM;

typedef struct _wfs_ttu_read_form
{
 LPSTR lpszFormName;
 LPSTR lpszFieldNames;
} WFSTTUREADFORM, * LPWFSTTUREADFORM;

typedef struct _ wfs_ttu_read_form_out
{
 LPSTR lpszFields ;
 LPWSTR lpszUNICODEFields ;
} WFSTTUREADFORMOUT, * LPWFSTTUREADFORMOUT;

typedef struct _wfs_ttu_write
{
 WORD fwMode;
 SHORT wPosX;
 SHORT wPosY;
 WORD fwTextAttr;
 LPSTR lpsText;
 LPWSTR lpsUNICODEText ;
} WFSTTUWRITE, * LPWFSTTUWRITE;

typedef struct _wfs_ttu_read
{
 WORD wNumOfChars;

Page 28
CWA 14050-22:2000

 WORD fwMode;
 SHORT wPosX;
 SHORT wPosY;
 WORD fwEchoMode;
 WORD fwEchoAttr;
 BOOL bCursor;
 BOOL bFlush;
 BOOL bAutoEnd;
 LPSTR lpszActiveKeys ;
 LPWSTR lpwszActiveUNICODEKeys ;
 LPWORD lpwActiveCommandKeys ;
 LPWORD lpwTerminateCommandKeys ;
} WFSTTUREAD, * LPWFSTTUREAD;

typedef struct _ wfs_ttu_read_in
{
 LPSTR lpszInput ;
 LPWSTR lpszUNICODEInput ;
} WFSTTUREADIN, * LPWFSTTUREADIN;

/*===*/
/* TTU Message Structures */
/*===*/

typedef struct _ wfs_ttu_field_failure
{
 LPSTR lpszFormName ;
 LPSTR lpszFieldName ;
 WORD wFailure ;
} WFSTTUFIELDFAIL, * LPWFSTTUFIELDFAIL;

typedef struct _ wfs_ttu_key
{
 CHAR cKey ;
 WORD wUNICODEKey;
 WORD wCommandKey;
} WFSTTUKEY, * LPWFSTTUKEY;

/* restore alignment */
#pragma pack(pop)

#ifdef __cplusplus
} /*extern "C"*/
#endif

#endif /* __INC_XFSTTU__H */

